Optimally Decomposing Coverings with Translates of a Convex Polygon

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decomposing a simple polygon into pseudo-triangles and convex polygons

In this paper we consider the problem of decomposing a simple polygon into subpolygons that exclusively use vertices of the given polygon. We allow two types of subpolygons: pseudo-triangles and convex polygons. We call the resulting decomposition PTconvex. We are interested in minimum decompositions, i.e., in decomposing the input polygon into the least number of subpolygons. Allowing subpolyg...

متن کامل

Decomposing a Simple Polygon into Trapezoids

Chazelle’s triangulation [1] forms today the common basis for linear-time Euclidean shortest path (ESP) calculations (where start and end point are given within a simple polygon). This paper provides an alternative method for subdividing a simple polygon into “basic shapes”, using trapezoids instead of triangles. The authors consider the presented method as being substantially simpler than the ...

متن کامل

Universal convex coverings

In every dimension d ≥ 1, we establish the existence of a positive finite constant vd and of a subset Ud of R d such that the following holds: C + Ud = R d for every convex set C ⊂ R of volume at least vd and Ud contains at most log(r) r points at distance at most r from the origin, for every large r.

متن کامل

More on Decomposing Coverings by Octants

In this note we improve our upper bound given in [7] by showing that every 9-fold covering of a point set in R by finitely many translates of an octant decomposes into two coverings, and our lower bound by a construction for a 4-fold covering that does not decompose into two coverings. We also prove that certain dynamic interval coloring problems are equivalent to the above question. The same b...

متن کامل

Convex Polygon Intersection Graphs

Geometric intersection graphs are graphs determined by the intersections of certain geometric objects. We study the complexity of visualizing an arrangement of objects that induces a given intersection graph. We give a general framework for describing classes of geometric intersection graphs, using arbitrary finite base sets of rationally given convex polygons and rationally-constrained affine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 2011

ISSN: 0179-5376,1432-0444

DOI: 10.1007/s00454-011-9353-9